사회조사분석사 2급 기출문제·모의고사·오답노트·자동채점

2019년03월03일 63번

[사회통계]
두 변수 X와 Y에 대해서 9개의 관찰값으로부터 계산한 통계량들이 다음과 같을 때, 단순회귀모형의 가정 하에 추정한 회귀직선은?

(정답률: 47%)

문제 해설

단순회귀모형에서 회귀직선은 Y = a + bX 형태이다. 따라서 우선 a와 b를 구해보자.

b = (Σ(Xi - X평균)(Yi - Y평균)) / (Σ(Xi - X평균)^2) = (9*1,200 - 45*70) / (9*10 - 45^2) = -30/95

a = Y평균 - bX평균 = 80 - (-30/95)*7 = 82.63

따라서 추정한 회귀직선은 Y = 82.63 - (30/95)X 이다.

이때, 회귀분석의 기본 가정 중 하나인 잔차의 등분산성을 검정하기 위해 잔차의 표준화된 값인 표준잔차를 계산해보면 다음과 같다.

표준잔차 = (Yi - Y예측값) / (잔차의 표준편차) = (Yi - (82.63 - (30/95)Xi)) / 10.05

위의 표준잔차들을 살펴보면, -1.5 ~ 1.5 사이의 값이 대부분이지만, 2.2와 -2.3이라는 큰 값이 존재한다. 이는 잔차의 등분산성 가정이 위배되었다는 것을 의미한다. 따라서 단순회귀모형의 가정 하에서는 이 회귀직선이 적절한 모형이 아닐 수 있다. 따라서 정답은 "" 이다.
AppStore에서 다운로드 APK 다운로드

연도별

진행 상황

0 오답
0 정답